Search results

Search for "molybdenum disulfide (MoS2)" in Full Text gives 14 result(s) in Beilstein Journal of Nanotechnology.

Determining by Raman spectroscopy the average thickness and N-layer-specific surface coverages of MoS2 thin films with domains much smaller than the laser spot size

  • Felipe Wasem Klein,
  • Jean-Roch Huntzinger,
  • Vincent Astié,
  • Damien Voiry,
  • Romain Parret,
  • Houssine Makhlouf,
  • Sandrine Juillaguet,
  • Jean-Manuel Decams,
  • Sylvie Contreras,
  • Périne Landois,
  • Ahmed-Azmi Zahab,
  • Jean-Louis Sauvajol and
  • Matthieu Paillet

Beilstein J. Nanotechnol. 2024, 15, 279–296, doi:10.3762/bjnano.15.26

Graphical Abstract
  • X–M–X or MX2 triatomic layer, where X is a chalcogen atom (e.g., sulfur, selenium, or tellurium) and M is a transition metal atom (e.g., molybdenum or tungsten) [10]. Among the layered TMD materials, molybdenum disulfide, MoS2, is of particular interest in optoelectronic applications because of its
PDF
Album
Supp Info
Full Research Paper
Published 07 Mar 2024

Influence of thickness and morphology of MoS2 on the performance of counter electrodes in dye-sensitized solar cells

  • Lam Thuy Thi Mai,
  • Hai Viet Le,
  • Ngan Kim Thi Nguyen,
  • Van La Tran Pham,
  • Thu Anh Thi Nguyen,
  • Nguyen Thanh Le Huynh and
  • Hoang Thai Nguyen

Beilstein J. Nanotechnol. 2022, 13, 528–537, doi:10.3762/bjnano.13.44

Graphical Abstract
  • : cyclic voltammetry (CV); dye-sensitized solar cells (DSSCs); electrocatalytic activity; honeycomb-like; molybdenum disulfide (MoS2); thin film; Introduction Since Grätzel’s first report in 1991, dye-sensitized solar cells (DSSCs) have been the subject of much research due to the easy fabrication process
  • compounds are considered a potential approach due to the high activity and acceptable price. Molybdenum disulfide (MoS2) has recently gained a lot of attention due to its layered structure, cost efficiency, and superior catalytic activity [9][10][11][12][13][14][15][16]. MoS2 exhibits layered structures
  • disulfide (MoS2) was prepared on substrates coated with fluorine-doped tin oxide (FTO) to substitute the platinum counter electrode (CE) for dye-sensitized solar cells (DSSCs). Herein, we synthesized layered and honeycomb-like MoS2 thin films via the cyclic voltammetry (CV) route. Thickness and morphology
PDF
Album
Supp Info
Full Research Paper
Published 17 Jun 2022

Prediction of Co and Ru nanocluster morphology on 2D MoS2 from interaction energies

  • Cara-Lena Nies and
  • Michael Nolan

Beilstein J. Nanotechnol. 2021, 12, 704–724, doi:10.3762/bjnano.12.56

Graphical Abstract
  • . Based on this understanding, we propose Co on MoS2 as a suitable candidate for advanced interconnects, while Ru on MoS2 is more suited to catalysis applications. Keywords: cobalt (Co); 2D materials; molybdenum disulfide (MoS2); ruthenium (Ru); thin film nucleation; Introduction Layered materials that
PDF
Album
Supp Info
Full Research Paper
Published 14 Jul 2021

Effect of localized helium ion irradiation on the performance of synthetic monolayer MoS2 field-effect transistors

  • Jakub Jadwiszczak,
  • Pierce Maguire,
  • Conor P. Cullen,
  • Georg S. Duesberg and
  • Hongzhou Zhang

Beilstein J. Nanotechnol. 2020, 11, 1329–1335, doi:10.3762/bjnano.11.117

Graphical Abstract
  • study of the electrical performance of chemically synthesized monolayer molybdenum disulfide (MoS2) field-effect transistors irradiated with a focused helium ion beam as a function of increasing areal irradiation coverage. We determine an optimal coverage range of approx. 10%, which allows for the
  • materials; Introduction Layered two-dimensional (2D) semiconductors have come to the fore in recent years as promising candidates for the implementation of flexible, transparent, and low-power electronics. In particular, transition metal dichalcogenides (TMDs), such as molybdenum disulfide (MoS2), have
PDF
Album
Full Research Paper
Published 04 Sep 2020

Monolayers of MoS2 on Ag(111) as decoupling layers for organic molecules: resolution of electronic and vibronic states of TCNQ

  • Asieh Yousofnejad,
  • Gaël Reecht,
  • Nils Krane,
  • Christian Lotze and
  • Katharina J. Franke

Beilstein J. Nanotechnol. 2020, 11, 1062–1071, doi:10.3762/bjnano.11.91

Graphical Abstract
  • the modes with strong electron–phonon coupling. Keywords: decoupling layer; molybdenum disulfide (MoS2); scanning tunneling microscopy, tetracyanoquinodimethane (TCNQ); vibronic states; Introduction When molecules are adsorbed on metal surfaces, their electronic states are strongly perturbed by
PDF
Album
Full Research Paper
Published 20 Jul 2020

DFT calculations of the structure and stability of copper clusters on MoS2

  • Cara-Lena Nies and
  • Michael Nolan

Beilstein J. Nanotechnol. 2020, 11, 391–406, doi:10.3762/bjnano.11.30

Graphical Abstract
  • character of Cu nanoclusters is preserved. Keywords: copper (Cu); density functional theory (DFT); 2D materials; molybdenum disulfide (MoS2); thin film nucleation; Introduction Since the successful exfoliation of monolayers of graphene by Novoselov et al., 2D materials have gained a large interest in a
PDF
Album
Supp Info
Full Research Paper
Published 26 Feb 2020

Design and facile synthesis of defect-rich C-MoS2/rGO nanosheets for enhanced lithium–sulfur battery performance

  • Chengxiang Tian,
  • Juwei Wu,
  • Zheng Ma,
  • Bo Li,
  • Pengcheng Li,
  • Xiaotao Zu and
  • Xia Xiang

Beilstein J. Nanotechnol. 2019, 10, 2251–2260, doi:10.3762/bjnano.10.217

Graphical Abstract
  • construction of other high-performance metal disulfide electrodes for electrochemical energy storage. Keywords: annealing; double modification; high-performance electrodes; lithium–sulfur battery; molybdenum disulfide (MoS2); reduced graphene oxide (rGO); Introduction Lithium–sulfur (Li–S) batteries have
PDF
Album
Supp Info
Full Research Paper
Published 14 Nov 2019

Direct observation of the CVD growth of monolayer MoS2 using in situ optical spectroscopy

  • Claudia Beatriz López-Posadas,
  • Yaxu Wei,
  • Wanfu Shen,
  • Daniel Kahr,
  • Michael Hohage and
  • Lidong Sun

Beilstein J. Nanotechnol. 2019, 10, 557–564, doi:10.3762/bjnano.10.57

Graphical Abstract
  • dichalcogenide (2D TMDC) materials. However, it is very challenging to carry out such studies during chemical vapor deposition (CVD). Here, we report the first, real time, in situ study of the CVD growth of 2D TMDCs. More specifically, the CVD growth of a molybdenum disulfide (MoS2) monolayer on sapphire
  • spectroscopy; molybdenum disulfide (MoS2) monolayer; two-dimensional transition-metal dichalcogenides (2D TMDC); Introduction Two-dimensional transition metal dichalcogenide (2D TMDC) materials have drawn wide attention because of their fascinating physical and chemical properties [1][2][3][4][5][6]. Given
PDF
Album
Supp Info
Full Research Paper
Published 26 Feb 2019

Toward the use of CVD-grown MoS2 nanosheets as field-emission source

  • Geetanjali Deokar,
  • Nitul S. Rajput,
  • Junjie Li,
  • Francis Leonard Deepak,
  • Wei Ou-Yang,
  • Nicolas Reckinger,
  • Carla Bittencourt,
  • Jean-Francois Colomer and
  • Mustapha Jouiad

Beilstein J. Nanotechnol. 2018, 9, 1686–1694, doi:10.3762/bjnano.9.160

Graphical Abstract
  • ; molybdenum disulfide (MoS2); nanosheets; sulfurization; transmission electron microscopy (TEM); Introduction There is a great interest in the development of one- and two-dimensional (1D and 2D) materials for field-emission (FE) based cathodes using various nanostructured materials [1] for applications in
PDF
Album
Supp Info
Full Research Paper
Published 07 Jun 2018

Free-radical gases on two-dimensional transition-metal disulfides (XS2, X = Mo/W): robust half-metallicity for efficient nitrogen oxide sensors

  • Chunmei Zhang,
  • Yalong Jiao,
  • Fengxian Ma,
  • Sri Kasi Matta,
  • Steven Bottle and
  • Aijun Du

Beilstein J. Nanotechnol. 2018, 9, 1641–1646, doi:10.3762/bjnano.9.156

Graphical Abstract
  • ][16], phosphorene [9], siligraphene (SiC5) [10] and molybdenum disulfide (MoS2) [11][17] possess a high specific surface area and high electrical conductivity making them the ideal candidates for gas sensors. In particular, investigations of XS2-based (X = Mo, W) monolayer nanodevices demonstrate that
PDF
Album
Supp Info
Full Research Paper
Published 05 Jun 2018

Intercalation of Si between MoS2 layers

  • Rik van Bremen,
  • Qirong Yao,
  • Soumya Banerjee,
  • Deniz Cakir,
  • Nuri Oncel and
  • Harold J. W. Zandvliet

Beilstein J. Nanotechnol. 2017, 8, 1952–1960, doi:10.3762/bjnano.8.196

Graphical Abstract
  • , Grand Forks, ND 58202, USA 10.3762/bjnano.8.196 Abstract We report a combined experimental and theoretical study of the growth of sub-monolayer amounts of silicon (Si) on molybdenum disulfide (MoS2). At room temperature and low deposition rates we have found compelling evidence that the deposited Si
  • Fermi level. Van der Waals materials with a band gap do not suffer from this limitation. Molybdenum disulfide (MoS2) is a member of the transition metal dichalcogenide (TMD) family that belongs to the class of van der Waals materials. Bulk MoS2 has a band gap of 1.29 eV, which increases to 1.90 eV for a
PDF
Album
Supp Info
Full Research Paper
Published 19 Sep 2017

3D continuum phonon model for group-IV 2D materials

  • Morten Willatzen,
  • Lok C. Lew Yan Voon,
  • Appala Naidu Gandi and
  • Udo Schwingenschlögl

Beilstein J. Nanotechnol. 2017, 8, 1345–1356, doi:10.3762/bjnano.8.136

Graphical Abstract
  • beyond the analytical solutions sought for in the current manuscript. Furthermore, we have included a study of a well-known compound 2D material (molybdenum disulfide MoS2) in order to further understand the properties derived for the elemental materials. Results and Discussion Continuum model The 2D
PDF
Album
Full Research Paper
Published 30 Jun 2017

Fracture behaviors of pre-cracked monolayer molybdenum disulfide: A molecular dynamics study

  • Qi-lin Xiong,
  • Zhen-huan Li and
  • Xiao-geng Tian

Beilstein J. Nanotechnol. 2016, 7, 1411–1420, doi:10.3762/bjnano.7.132

Graphical Abstract
  • and Vibration, Xi’an Jiaotong University, Xi’an 710049, China 10.3762/bjnano.7.132 Abstract The fracture strength and crack propagation of monolayer molybdenum disulfide (MoS2) sheets with various pre-existing cracks are investigated using molecular dynamics simulation (MDS). The uniaxial tensions of
PDF
Album
Supp Info
Full Research Paper
Published 07 Oct 2016

DNA origami deposition on native and passivated molybdenum disulfide substrates

  • Xiaoning Zhang,
  • Masudur Rahman,
  • David Neff and
  • Michael L. Norton

Beilstein J. Nanotechnol. 2014, 5, 501–506, doi:10.3762/bjnano.5.58

Graphical Abstract
  • prerequisite for the successful fabrication of hybrid DNA origami/semiconductor-based biomedical sensor devices. Molybdenum disulfide (MoS2) is an ideal substrate for such future sensors due to its exceptional electrical, mechanical and structural properties. In this work, we performed the first investigations
  • significantly longer times. These findings will be beneficial for the fabrication of future DNA origami/MoS2 hybrid electronic structures. Keywords: atomic force microscopy (AFM); DNA origami; molybdenum disulfide (MoS2); pyrene; 1-pyrenemethylamine; surface modification; Introduction Since it was first
  • properties, so as to enable complex and diverse circuit designs, thereby providing functionality essential for the construction of sensing biodevices with extraordinary sensitivity, rapid readout and good stability. As a layered two-dimensional (2D) material, molybdenum disulfide (MoS2) exhibits robust
PDF
Album
Supp Info
Full Research Paper
Published 22 Apr 2014
Other Beilstein-Institut Open Science Activities